Home » Artificial Intelligence » Self-Healing Graphene Holds Promise for Artificial Skin in Future Robots

Self-Healing Graphene Holds Promise for Artificial Skin in Future Robots

With the first ever documented observation of the self-healing phenomena of graphene, researchers hint at future applications for its use in artificial skin.

Graphene, which is, in simple terms, a sheet of pure carbon atoms and currently the world’s strongest material, is one million times thinner than paper; so thin that it is actually considered two dimensional. Notwithstanding its hefty price, graphene has quickly become among the most promising nanomaterials due to its unique properties and versatile prospective applications.

The paper published in Open Physics refers to an extraordinary yet previously undocumented self-healing property of graphene’s, which could lead to the development of flexible sensors that mimic the self-healing properties of human skin.

The largest organ in the human body, skin has been known for its fascinating self-healing ability – but until now, emulating this mechanism proved too much of a challenge as manmade materials lack this aptitude. Due to unprecedented stretching, bending and incidental scratches, artificial skin used in robots is extremely susceptible to ruptures and fissures. The study offers a novel solution where a sub-nano sensor uses graphene to sense a crack as soon as it starts nucleation, and surprisingly, even after the crack has spread a certain distance. According to the authors, this technology could quickly become viable for use in the next generation of electronics.

According to Dr. Swati Ghosh Acharyya, one of the researchers.

We wanted to observe the self-healing behavior of both pristine and defected single layer graphene and its application in sub-nano sensors for crack spotting by using molecular dynamic simulation. We were able to document the self-healing of cracks in graphene without the presence of any external stimulus and at room temperature.

The results revealed that self-healing occurred by spontaneous recombination of the dangling bonds whenever within the limit of critical crack opening displacement.

The researchers subjected single layer graphene containing various defects like pre-existing holes and differently oriented pre-existing cracks to uniaxial tensile loading till fracture. Interestingly enough, once the load was relaxed, the graphene started to heal and the self-healing continued irrespective of the nature of pre-existing defects in the graphene sheet. No matter what length of the crack, the authors say they all healed, provided the critical crack opening distance lied within 0.3 – 0.5 nm for both the pristine sheet as well as for the sheet with pre-existing defects.

Simulating self-healing in artificial skin will open the way to a variety of daily life applications ranging from sensors, through to mobile devices and ultracapacitors. In case of the latter, graphene-based devices would have an advantage of the large surface of graphene to provide increase in the electrical power by storing electrons on graphene sheets. Apparently such supercapacitors would have as much electrical storage capacity as lithium-ion batteries but could be recharged in minutes instead of hours.

The original article is fully open access and available on De Gruyter Online.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: